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ARTICLE INFO ABSTRACT

Article history: Dravet syndrome (DS) is characterized by severe infant-onset myoclonic epilepsy along with delayed psychomo-
Received 21 October 2014 tor development and heightened premature mortality. A primary monogenic cause is mutation of the SCN1A
Revised 3 January 2015 gene, which encodes the voltage-gated sodium channel subunit Na, 1.1. The nature and timing of changes caused
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Available online 26 February 2015 by SCN1A mutation in the hippocampal dentate gyrus (DG) network, a core area for gating major excitatory input

to hippocampus and a classic epileptogenic zone, are not well known. In particularly, it is still not clear whether

the developmental deficit of this epileptogenic neural network temporally matches with the progress of seizure
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SCN1A development. Here, we investigated the emerging functional and structural deficits of the DG network in a novel
Dravet syndrome mouse model (Scn1a®'%9?"*) that mimics the genetic deficit of human DS. Scn1a®'%°¥* (Het) mice, similarly to
Epilepsy human DS patients, exhibited early spontaneous seizures and were more susceptible to hyperthermia-induced

Mouse model seizures starting at postnatal week (PW) 3, with seizures peaking at PW4. During the same period, the Het DG
exhibited a greater reduction of Na,1.1-expressing GABAergic neurons compared to other hippocampal areas.
Het DG GABAergic neurons showed altered action potential kinetics, reduced excitability, and generated fewer
spontaneous inhibitory inputs into DG granule cells. The effect of reduced inhibitory input to DG granule cells
was exacerbated by heightened spontaneous excitatory transmission and elevated excitatory release probability
in these cells. In addition to electrophysiological deficit, we observed emerging morphological abnormalities of
DG granule cells. Het granule cells exhibited progressively reduced dendritic arborization and excessive spines,
which coincided with imbalanced network activity and the developmental onset of spontaneous seizures. Taken to-
gether, our results establish the existence of significant structural and functional developmental deficits of the DG

Abbreviations: AlS, axon initial segment; AHP, afterhyperpolarization; CA1, cornu ammonis 1; CA3, cornu ammonis 3; DG, dentate gyrus; DS, Dravet syndrome; EPSC, excitatory postsyn-
aptic current; ES cell, embryonic stem cell; GABA, gamma-aminobutyric acid; GAD, glutamate decarboxylase; HIS, hyperthermia-induced seizure; IPSC, inhibitory postsynaptic current; KI,
knock-in; PB, phosphate buffer; PD, postnatal day; PPR, p aired-pulse ratio; PV, parvalbumin; PW, postnatal week; PSC, postsynaptic current; SCN1A, sodium channel type I o subunit; WT,
wild type.
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network and the temporal correlation between emergence of these deficits and the onset of seizures in Het animals.
Most importantly, our results uncover the developmental deficits of neural connectivity in Het mice. Such structural
abnormalities likely further exacerbate network instability and compromise higher-order cognitive processing later
in development, and thus highlight the multifaceted impacts of Scnla deficiency on neural development.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Dravet syndrome (DS), which is primarily caused by genetic mutation
in the sodium channel-encoding gene SCN14, is a neurodevelopmental
disorder. The typical symptoms of DS include severe fever-induced
febrile epilepsy and generalized seizures during infancy (Harkin et al.,
2007). The frequency and severity of seizures grow worse over time,
concomitantly with the development of other seizure types (Harkin
et al., 2007).

More than two-thirds of DS patients carry a loss-of-function muta-
tion in SCN1A, which encodes the e subunit of the voltage-gated sodium
channel Na,1.1. In rodents, the central expression of Na,1.1 becomes
detectible starting at PW2 and plateaus by PW4 (Gazina et al., 2010;
Ogiwara et al., 2007). This time frame coincides with massive activity-
dependent dendritic and spine remodeling in the hippocampus and
other cortical areas during development (Gomez-Di Cesare et al.,
1997; Miller, 1981). Na,1.1 is predominately expressed in the axon
and soma of fast-spiking parvalbumin (PV)-positive (PV(+)) interneu-
rons (Ogiwara et al., 2007; Wang et al., 2011), with some expression
observed in a small fraction of CaMKII -expressing excitatory neurons
in the hippocampus and neocortex (Dutton et al., 2012). Despite being
expressed in different neuron types, heterozygous Scnla mutations
appear to selectively affect interneurons (Cheah et al., 2012; Dutton
et al,, 2012; Tai et al., 2014). Functionally, Na, 1.1 is essential for gating
action potential (AP) initiation, being one of the major sodium channels
residing in the axon initial segment (AIS, Duflocq et al., 2008; Ogiwara
et al.,, 2007). Anatomically, Na,1.1-expressing interneurons appear to
play a more significant role in specific brain areas, such as the dentate
gyrus (DG) and cortical areas, as these areas suffer a much greater loss
of Na,1.1-expressing gamma-aminobutyric acid (GABA)ergic neurons
in Scnla loss-of-function mouse models (Cheah et al., 2012; Han et al.,
2012).

In currently available Scnla-deficient DS mouse models (all DS
models mentioned are referring to those with Scn1a mutations, unless
otherwise specified), the frequency of spontaneous seizures primarily
peaks by PW4 (Cheah et al., 2012; Kalume et al., 2013; Ogiwara et al.,
2007; Yu et al., 2006). The peak of spontaneous seizures matches the
developmental expansion of Na, 1.1 expression. Electrophysiological
recording in animal models that carry Scnla mutation suggests that
epileptic activity during hyperthermia-induced seizures (HISs) might
initiate in the hippocampus (Ohno et al., 2011; Liautard et al., 2013;
but see Dutton et al., 2012). While most of the hippocampal-related
research in Scn1a models focuses on the hippocampal CA1 area, the
pathological consequence of Scn1a dysfunction in the DG, a core area
for gating major excitatory input to hippocampus, has been largely
overlooked. Moreover, there is still no systematic validation of the
temporal correlation between the developmental onset of seizures
and the emerging developmental deficit of an epileptogenic network.
In the present study, we aimed to delineate the impact of Na,1.1
deficiency on the developing DG network in a new DS mouse model
harboring an Scnla mutation (Scn1af'%%%) that is identical to one
found in a subset of DS patients. Our results show that Na, 1.1 deficiency
results in progressively impaired structural and functional development
of DG granule cells. Furthermore, our findings strongly support the idea
that the onset of spontaneous seizures is precisely correlated with
expansion of Na,1.1-expressing GABAergic neurons and emergence
of these structural and functional deficits in DG network during
development.

Materials and methods
Generation and maintenance of Scn1af%9°X knock-in mice

All of the animal experiments were performed in accordance
with guidelines established by the Institutional Animal Care and Use
Committee of the National Taiwan University College of Medicine.
A targeting vector, pL253-Scn1a, was developed based on the recom-
bineering method and constructed following previously described
procedures (Liu et al., 2003). The homologous arm was a 15-kb genomic
DNA fragment comprising exons 10-17 of the Scn1a gene from a 129/Sv
background (bMQ419a06, purchased from Source BioScience, Notting-
ham, UK). To insert the TAG stop codon, a 600-bp fragment containing
exon 17 and its upstream and downstream sequences was first
subcloned into Notl/BamHI sites of pL452, which harbors a neomycin-
resistance cassette surrounded by two loxP sites. This changed the
wild type GAG codon (glutamic acid, E) at position 1099 to TAG (X),
generating the desired E1099X mutation. The resulting plasmid,
pL452-E1099X, which carried E1099X and the neo-2-loxP cassette,
was inserted into pL253-Scnla by recombineering to generate the
pL253-Scn1a-E1099X plasmid. The plasmid was linearized by Notl
digestion and electroporated into R1 hybrid embryonic stem (ES)
cells (129X1 x 129S1). Successfully targeted ES cell clones were iso-
lated and identified by Southern blotting (see Fig. 1 legend). A Cre-
expressing plasmid was used to excise the Neo cassette from the
correctly targeted ES cell clones (Huang et al., 2011). After transfection,
the surviving individual ES cell clones were isolated and screened by
PCR using primers AU (5’-AGGGAGATGAATGCCAAAGC-3’) and BD
(5'-GACAATTGGTAGGGAGCACT-3’) in a PCR reaction with the following
conditions: 95 °C for 2 min, followed by 40 cycles of 95 °C for 30 sec,
55 °C for 1 min and 72 °C for 1 min, and a final extension at 72 °C for
7 min. The PCR reaction yielded a 359-bp amplicon from the wild-type
(WT) allele and a 459-bp amplicon from the knock-in (KI) allele. Chi-
meric mice were generated by injecting the resulting KI ES cell clones
into C57BL/6]Narl blastocysts (Chen et al., 2012). Germ-line transmis-
sion of the Scn1af1%9%X 3llele was achieved by breeding chimeric mice
with C57BL/6]Narl female mice and was verified by the genotyping,
sequencing, and Southern blotting of genomic DNA from the offspring.
Scn1af199%% 3llele in a 129 background was generated by mating the
male chimeric mice with 129 female mice (129S2/SvPasCrl; Charles
River, L'Arbresle Cedex, France). Mice in the B6:129 N2 (~75%/25%)
genetic background were used for the experiments, unless otherwise
indicated. To generate Gad1°™/*:Scn1af%9%%'* animals, Scn1a®1%9%%/+
mice in a 129 background were crossed with Gad1™+ mice in a B6 back-
ground (kindly provided by Dr. Yuchio Yanagawa) (Tamamaki et al.,
2003). The resulting Gad1°™/*:Scn1a®* and Gad1°™/+:Scn1af099%/+
mice thus carry a mixed B6:129 (50%/50%) background.

Immunoblot analysis

Whole brains were collected from Scnia®™* (WT), Scn1a®1999%/+
(Het), and Scn1af?099X/E1099X (Homo) mice (3 mice for each genotype)
at postnatal day (PD) 14, and hippocampi were dissected from WT
and Het mice (5 mice for each age group) at PW3, PW4, and PW6. The
samples were homogenized in a protein extraction reagent (T-per,
Thermo Fisher Scientific, Waltham, MA, USA) containing 1% protease
inhibitor (Sigma-Aldrich, St Louis, MO, USA). The total protein concen-
tration was determined using a Pierce BCA protein assay kit (Thermo
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Fig. 1. Generation of Scn1a®'%* mice. a. Location of E1099X on the SCN1A protein. E1099X is located in the linker between domains 2 and 3. Ext, extracellular; Int, intracellular. b. Gene-targeting
strategy for generating the Scn1a®%?X allele. WT, wild type; KI, knock-in; filled boxes, exons; filled box with star, E1099X in exon 17; filled triangles, loxP; Neo, neomycin resistance gene; TK,
thymidine kinase gene; Cre, Cre recombinase; A, Avrll site; B, BamHI site; X, Xhol site; AU and BD, primers for PCR genotyping. c. Sequence verification of the E1099X mutation. Genomic DNA
sequencing from Scn1af'* mouse tail confirmed the presence of premature stop codon (GAG— TAG; E1099X) in the newly generated animals. d. Scn1af%?% offspring were genotyped by
Southern blot. Tail DNA was digested with Avrll plus Xhol (for 5" probe) or BamHI (for 3’ probe). With the 5’ probe, the enzyme digestion products of WT and K1 alleles are 18.3 kb and
143 kb, respectively. With the 3’ probe the digestion products are 16.5 kb (WT) and 13 kb (KI). e. The genotypes of Scn1a®'%% allele were verified using PCR genotyping
with primers AU and BD. WT amplicon: 359 bp; KI amplicon: 459 bp. f. The protein expression level of Na,1.1 in all Scn1a£7%99% allele genotypes. The protein lysates
were extracted from the whole brain of WT, Het, and Homo mice at PD14, and were analyzed by immunoblotting with an anti-Na, 1.1 antibody. The expression level was normalized

to a-tubulin (3 mice for each genotype).

Fisher Scientific). The protein samples were mixed with 4 x NuPAGE
lithium dodecyl sulfate sample buffer (Invitrogen, Grand Island, NY,
USA) and 4x NuPAGE reducing reagent (Invitrogen). The samples
were separated on a NuPAGE Novex Tris-acetate 3-8% gel (Invitrogen)
and electrotransferred onto a polyvinylidene fluoride (PVDF) membrane.
The blots were probed with primary antibodies against Na,1.1
(1:300; Millipore, Billerica, MA, USA), Na,1.2 (1:500; Millipore),
Na, 1.3 (1:200; Millipore), Na, 1.6 (1:500; Alomone Labs, Jerusalem,

Israel), and a-tubulin (1:10,000; Sigma). The primary antibodies
were recognized by horseradish peroxidase (HRP)-conjugated anti-
mouse IgG or anti-rabbit IgG secondary antibodies (both 1:10,000;
Millipore). The secondary antibodies were later detected by Immobilon
Western Chemiluminescent HRP substrate (Millipore) or SuperSignal
West Femto Maximum Sensitivity substrate (Thermo Fisher Scientific).
The signal was collected and quantified using Multi Gauge v3.0 software
(Fujifilm, Tokyo, Japan) and normalized to the expression of c-tubulin.
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Electroencephalography

Mice (3 mice for each genotype) at PW8-PW12 were used for elec-
troencephalography (EEG) studies. EEG electrodes were put in direct
contact with the cortex while the animals were under ketamine/
xylazine anesthesia. Recordings were collected using a V75-01 amplifier
(Colbourn Instruments, Lehigh Valley, PA, USA) and band-pass filtered
between 0.1 and 40 Hz. Digitized EEG waveforms were stored as binary
computer files for subsequent analysis. Post-acquisition determination
of seizure events in EEG recordings was performed by visual scoring
(Jou et al., 2013) using AxoScope 10 software (Molecular Devices,
Sunnyvale, CA, USA).

Video recording and seizure analysis

WT and Het mice (5 WT mice and 29 Het mice) were continuously
and individually video-monitored in their home cages from PD20 to
PD25. Seizure severity was scored based on Racine stages (Racine,
1972): 0, no response; 1, mouth and facial movement; 2, head nodding;
3, forelimb clonus; 4, forelimb clonus with rearing; and 5, generalized
tonic-clonic seizures and falling.

Seizure induction by hyperthermia

The body temperatures of WT and Het mice (20 mice for each age
group) at PW3-PW5 and PW16-PW20 were elevated by 0.5 °C steps
every 2 min, with monitoring performed using a rectal temperature
probe (Cheah et al., 2012). The mice were video-recorded until a seizure
was observed. The rectal temperature at which a seizure (Racine stage 3
or higher) was induced was defined as the threshold temperature
of HIS.

Measurement of hippocampal GABA concentration

Hippocampi were dissected from WT and Het male mice at PW3
(4 mice for each genotype) and PW4 (11 mice for each genotype).
GABA concentrations were measured using a GABA Research ELISA
kit (Labor Diagnostika Nord, Nordhorn, Germany) according to the
manufacturer's instructions. Briefly, dissected hippocampi were ho-
mogenized separately and each supernatant was used to measure the
GABA level by using the GABA ELISA kit. The total protein concentration
was determined using a Pierce BCA protein assay kit (Thermo Fisher
Scientific). The hippocampal GABA concentration was normalized to
the total protein concentration.

Immunohistochemistry and quantification

Male mice (3 mice for each age group) at PW3 and PW4 were
perfused with normal saline followed by 4% paraformaldehyde in
0.1 M phosphate buffer (PB). Whole brains were isolated and post-
fixed in the same fixative for 3 hr at 4 °C, and then embedded in paraffin.
Coronal sections (5 um) were cut, deparaffinized, and incubated in
10 mM citrate buffer for epitope retrieval. Tissue sections were
immersed in 0.1% Triton X-100 in PBS and blocked with Rodent-block
M (Biocare Medical, Concord, CA, USA), and incubated with primary
antibodies against rabbit Na,1.1 (1:25; Alomone Labs) and GAD67
(1:100; Millipore). DyLight 488- and Cy3-conjugated secondary anti-
bodies (1:200, Jackson ImmunoResearch Laboratories, West Grove, PA,
USA) were used for signal detection. A total of six to eight brain sections
(with 40 pm interval) per brain were analyzed. Images were examined
using a confocal microscope (Carl Zeiss LSM 780, Oberkochen,
Germany). Images were then analyzed using Axiovision software (Carl
Zeiss) to quantify the amount of GADG67-positive (GAD67(+)),
Na,1.1-positive (Na,1.1(+)), and Na,1.1-expressing GAD67-positive
(Na,1.1-GAD67(+)) neurons in DG, CA3, and CA1. To quantify the im-
munohistochemical result, the intensity of 5 random 40 um x 40 um

square areas from the background area were averaged as the baseline
intensity. Positive staining signal was defined as the signal that had an
intensity above 2.5 times of the baseline intensity, with staining area
equal or larger than 80 um?, and was colocalized with the cells that
were reactive to DAPI staining. All scoring was done in a blind fashion
with respect to genotype and was performed by two independent
investigators.

Preparation of hippocampal slices

Male mice at PW3 and PW4 were decapitated, and the brains were
quickly removed and immersed in ice-cold oxygenated cutting solution
consisting of (in mM): 250 sucrose, 2.5 KCl, 0.5 CaCl,, 5 MgCl,, 26
NaHCOs, 1.26 NaH,PO4, and 15 glucose. The solution was aerated to
a pH of ~7.4 with 95% 0,/ 5% CO,. Coronal brain slices (350 pm)
were cut in cutting solution using a vibratome (DTK-1000, Dosaka,
Kyoto, Japan). The slices were then transferred to a holding chamber
containing artificial cerebrospinal fluid (ACSF) consisting of (in mM):
125 Nadl, 2.5 KCl, 2 CaCl,, 1 MgCl,, 26 NaHCOs3, 1.26 NaH,PO,, 15
glucose, aerated with 95% 0,/5%C0,. The slices were maintained at
room temperature (23 + 2 °C) for at least 1 hr before recording. For
recording, the brain slices were placed in a recording chamber and
continuously perfused with aerated ACSF. Whole-cell patch-clamp
recordings were acquired at room temperatur (Molre with an Axopatch
200B amplifieecular Devices), using patch electrodes with resistance of
3 to 8 MQ.

Electrophysiological recordings

The properties of Na,1.1-expressing neurons were evaluated in
PV(+) GABAergic neurons (Ogiwara et al., 2007) in Gad1®F™™:
Scnla®™* and Gad1¢™/*:Scn1af"%%9%'+ mice at PW3 (5 Gad1¢™/+:
Scnla™™ mice and 3 Gad1°™/*:Scn1af"%9%'* mice) and PW4 (6 Gad1-
GFP/+:Scn1a™* mice and 4 Gad 17/ *:Scn1a®199%%+ mice). Gad1°F"-
expressing neurons chosen for recording were fast-spiking basket cells
with large soma, located at the border between the hilus and the gran-
ule cell layer of the DG (Liu et al., 2014; Martina et al., 1998). All of the
recordings were performed at room temperature. The APs of GFP-
expressing neurons were recorded under current clamp using a K-
gluconate-based internal solution containing (in mM): 140 K-gluco-
nate, 9 NaCl, 1 MgCl,, 1 EDTA, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP, and
0.4% biocytin, pH 7.3 using KOH. A series of depolarizing currents was
applied to patched neurons, and the features of the AP spike trains
were analyzed offline. Input resistance was calculated from the voltage
response between steady state and a 1-s hyperpolarizing current in-
jection of —50 pA. The properties of a single AP were measured from
the first AP elicited by the depolarizing protocol. The AP threshold was
determined as the first point in the voltage trajectory with a slope
change exceeding 20 V/s. The AP amplitude was measured from the
threshold to the peak of the spike. Spike adaptation was quantified by
the spike number reduction in the third 100 ms in relation to the
spike number in the first 100 ms at 1000 pA current step ( (spike num-
ber during 1st 100 ms) — (spike number during 3rd 100 ms)/(spike
number during 1st 100 ms) x 100) (Butt et al., 2005). AP amplitude ad-
aptation was assessed by the amplitude reduction of the last AP in rela-
tion to the amplitude of the initial AP at 1000 pA step ((amplitudestAF)
— (amplitude'* A") / (amplitude’s* A%) x 100). The slopes were calcu-
lated during the 10-90% rising phase and the 90-10% falling phase of
the AP. The AP half-width was measured as the width at half-maximal
amplitude. Afterhyperpolarization (AHP) was measured as the voltage
difference between the threshold and the most negative voltage point
after the AP.

Biocytin was infused into patched neurons during recording as a
marker. After recording, slices containing biocytin-filled cells were
fixed with 4% paraformaldehyde overnight at 4 °C. The slices were
then incubated with Texas Red-avidin (1:200; Vector Labs, Burlingame,
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CA, USA) and mouse anti-PV primary antibody (1:500; Millipore)
followed by Cy5-conjugated anti-rabbit IgG (1:200; Jackson
ImmunoResearch Laboratories). The data were analyzed only
from PV-positive neurons.

To study postsynaptic properties of DG granule cells, hippocampal
slices were prepared from WT and Het mice at PW4. The spontaneous
postsynaptic currents (sPSCs) of granule cells were recorded in the
presence of 3 mM kynurenic acid for spontaneous inhibitory post-
synaptic currents (sIPSCs), or in the presence of 100 uM picrotoxin
(PTX) for spontaneous excitatory postsynaptic currents (SEPSCs).
The recording was done at a holding potential of —70 mV in a
CsCl-based internal solution containing (in mM): 140 CsCl, 9 Nadl,
1 MgCl,, 1 EDTA, 10 HEPES, 10 QX-314, 2 Mg-ATP, 0.3 Na-GTP, and
0.4% biocytin, pH 7.3 using CsOH. Miniature IPSCs (mIPSCs) and
EPSCs (mEPSCs) were recorded under identical conditions with 1 pM
tetrodotoxin (TTX; Tocris, Bristol, UK). To evaluate the paired-pulse
ratio (PPR), pulses evoked by extracellular stimulation of the perforant
pathway were delivered at 50-ms intervals, and the PPR was calculated
by dividing the amplitude of the second EPSC by that of the first. The
data were acquired using Clampex 10.2 software (Molecular Devices),
filtered at 5 kHz, digitized at 10 kHz, and recorded using AxoScope
10.2 software (Molecular Devices). Access resistance was monitored
at regular intervals throughout each experiment, and recordings were
discarded if the values changed by > 20%. The AP firing activity was
analyzed using Clampfit 10.2 (Molecular Devices). Miniature synaptic
events were analyzed using Mini Analysis Program v6.0 (Synaptosoft,
Fort Lee, NJ, USA). sIPSCs were examined in 7 WT and 6 Het mice,
SEPSCs in 9 WT and 10 Het mice, mIPSCs in 3 WT and 4 Het mice, and
mEPSCs in 7 WT and 9 Het mice.

Golgi staining

The Golgi-Cox method (Chen et al., 2012) was used to reveal the
morphological features of DG granule cells. Brain samples were collected
from WT and Het mice at PD14-PD16 (12 mice for each genotype)
and PD21-PD24 (9 WT mice and 11 mice). The specimens were
placed in impregnation solution from the FD Rapid GolgiStain kit
(NeuroTechnologies, Ellicott City, MD, USA), and DG granule cells
were imaged, reconstructed, and analyzed using the Stereo Investi-
gator system (Microbrightfield Bioscience, Williston, VT, USA) and
Neurolucida software (Microbrightfield Bioscience), as previously
described (Chen et al., 2012). Dendritic segments were classified
as branch segments (between two branching points) or terminal
segments (between a branching point and terminal ending). The
density of dendritic spines was measured in proximal segments
(<50 pm from soma) and distal segments (>100 um from soma)
(6 mice for each age group).

Statistical analysis

The data were analyzed by GraphPad Prism 6 (GraphPad Software
Inc, La Jolla, CA, USA). The results of Figs. 1f, 4c, 5a-d bottom insets,
and f were analyzed using two-tailed unpaired Student’s t-test. For
Figs. 23, i, 3d-f, 4d-e, g-k, and 6, the results were first analyzed by a
two-way analysis of variance (ANOVA) with genotype as one of the
variables. Post-hoc analysis (Bonferroni test) was performed when the
ANOVA test yielded a significant main effect for genotype or a signifi-
cant interaction between genotype and the second variable. The result
of these two-way ANOVA tests was summarized in Supplement
Table 1. In the case of spontaneous and miniature PSCs (Figs. 5a-d),
PSCs from the same genotype were combined for the cumulative
fraction and analyzed by Kolmogorov-Smirnov (K-S) test. For the
frequency of spontaneous and miniature PSCs (Figs. 5a-d, bottom
insets), the reported frequency was averaged from the mean fre-
quency computed in each neuron based on genotype, and analyzed
by unpaired t-test. All data are expressed as mean + SEM. The

asterisks indicate significant differences between groups: * p < 0.05;
*p<0.01; ** p<0.001.

Results

Generating a novel DS model: Scn1af%%% mice

We established a novel Scnla-deficient mouse model based on the
results from multiple clinical genetic screens (Depienne et al., 2009;
Mancardi et al., 2006; Riva et al., 2009). A premature stop mutation
(GAG — TAG) at amino acid residue E1099 (E1099X) of the Scnla
gene was introduced into the linker between domains 2 and 3 of
Na,1.1 (Fig. 1a). We then knocked the E1099X mutation into mouse
ES cells (see recombination scheme in Fig. 1b). These ES cells were
later used to derive chimeric mice (Figs. 1a-b). Heterozygous offspring
from chimeric males and C57BL/6 females exhibited ~70% mortality in
adulthood. Intercrosses of surviving heterozygous mice generated
three genotypes at a typical Mendelian ratio (1:2:1). Genotyping by
Southern blotting (Fig. 1d) and PCR (Fig. 1e) confirmed the expected
genotypes of these offspring.

Similar to the strain-dependent mortality reported for several
previous DS mouse models, the survival rate of Het mice varied de-
pending on the strain background (Miller et al., 2014; Ogiwara
et al.,, 2007; Yu et al., 2006). While most Het offspring in a pure 129
background developed normally and were fertile after puberty (pre-
mature death rate by PW4 = 5.4%, n = 74), 46.2% of Het in the
C57BL/6 and 129 mixed backgrounds (~75%/25%) died by PW4. To
characterize the pathology resulting from Na,1.1 deficit, only
mixed-background mice were used for further analysis. We next
examined the expression of Na,1.1 in the three Scn1af%9%X allele
genotypes using an N-terminal specific antibody against Na,1.1.
Global Na,1.1 expression was reduced to 54.1% in Het mice and
was undetectable in Homo mice compared to the controls (Fig. 1f).
This result proved that our DS mouse model was a null mutation
model and provided a preliminary molecular basis for the subsequent
phenotype characterization.

Het mice recapitulated seizure susceptibility during early development.

During the first postnatal week, both Het and Homo pups were
viable and without gross abnormalities. Beginning at PD9, Homo pups
exhibited an unstable gait that deteriorated progressively. As early as
PD12, Homo pups developed spontaneous generalized tonic-clonic
seizures that lasted from 1 to 3 min (Movie 1). By PD15, these mice
exhibited significantly lower body weight than WT or Het mice
(Fig. 2a), likely due to malnutrition or dehydration. All of the Homo
mice died by PD17 (Fig. 2b).

Het mice, on the other hand, developed seizure phenotype slightly
later compared to the homozygous mice. In Het mice, spontaneous
epileptiform activity began as early as PD20 (PW3) (Figs. 2c-d). Seizure
activity in Het mice was closely followed in their home cages from PD20
to PD25 (Movie 2). To quantify seizure severity, seizures were scored
from 1 to 5 based on Racine scale (Racine, 1972). During this period,
44.8% of animals exhibited spontaneous seizures (7 of 17 males and 6
of 12 females). Among these animals, a subset had undulating patterns
of seizures, with the severity score surging or dropping abruptly during
the episode. In the mice that died during the observation, the average
number of episodes of spontaneous seizures was 5.8 + 1.5, with some
dying after a single episode (Fig. 2e). The average seizure duration
was 45.8 + 2.2 s (Fig. 2f), and the mean latency from first seizure
onset to death was 13.9 4 5.2 h (Fig. 2g). The animals that experienced
severe seizure attacks (Racine scale stage 5) died at the average age of
PD21.9 (Fig. 2h). Taken together, our results strongly suggest a close
connection between Scnla dysfunction and spontaneous seizure as
well as sudden unexpected death (Sakauchi et al., 2011).
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Fig. 2. Premature death, spontaneous seizures, and HISs in Scn1af’%*** mice. a. Homo mice showed much less body weight compared to WT and Het mice (ps < 0.001 for group comparison
at PD15, Bonferroni test). No significant difference was observed between WT and Het mice (3 mice for each genotype). b. The presence of Scn1a'** allele reduced survival rate. WT = 100
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the onset of HISs (20 mice/age for each genotype; n.s., not significant).

DS infants are highly susceptible to epileptic attacks under hyper-
thermic conditions. To test if our Scn1a £%°*/* mice were also sensitive
to HISs, we examined the HIS threshold at serial developmental time
points. The threshold temperatures of HISs in WT and Het mice were
compared at PW3-PW5 and PW16-PW20 (Fig. 2i). The threshold
temperatures in Het mice at PW3-PW5 were significantly lower than
those in WT mice regardless of sex (Het: 40.2 °C in males and 40.1 °C
in females; WT: 44.3 °C in males and 44.7 °C in females; average
temperature for both males and females are presented in Fig. 2i). The
reduced threshold of HISs persisted into adulthood (PW16-PW20;
Het: 40.2 °C in males and 40.0 °C in females; WT: 43.3 °C in males and
43.6 °C in females; average temperature for males and females are
presented in Fig. 2i). Thus, the major phenotypes of Het mice, including
premature death, spontaneous seizures, and increased susceptibility to
HISs, remarkably resembled the key features observed in DS patients.
As we observed a developmental transition between PW3 and PW4,
during which the emerging spontaneous seizures were accompanied
with surging mortality, we focused on developmental abnormalities of
Na, 1.1 expression and epileptogenic network dysfunction primarily
within this time window.

Preferential reduction of Na,1.1-expressing interneurons in
hippocampal DG

The hippocampus is a major epileptogenic zone (de Lanerolle et al.,
1989; Lothman et al., 1992). Studies in other Scn1a mutant models

have suggested that the hippocampus contributes to epilepsy initiation
in HISs (Liautard et al.,, 2013; Ohno et al.,, 2011). We therefore focused
on the hippocampus to examine how the genetic deficit in Scn1a affected
the temporal expression of Na,1.1 during early development, when
frequent spontaneous seizures emerged. Na, 1.1 protein levels in the
hippocampus were quantified in WT and Het mice at PW3, PW4, and
PW6 (Fig. 3a). Hippocampal Na, 1.1 expression in male WT mice was
dramatically increased from PW3 to PW4 and became stable thereafter
(Fig. 3b). In Het mice, however, the overall Na,1.1 level across ages
was less than 50% of that in WT (Fig. 3b). A similar reduction of Na,1.1
was seen in female Het mice (Fig. S1). Because we did not observe a
detectable difference of Na, 1.1 expression between male and female
animals, we focused on male animals in the following studies.

Na, 1.1 is primarily expressed in GABAergic neurons in the hippo-
campus (Ogiwara et al., 2007; Yu et al., 2006). We next quantified
the proportion of Na,1.1-expressing GAD67-positive neurons (Na,1.1-
GAD67(+)) in the hippocampus (Fig. 3c). In WT mice, ~80% of
GADG67(+) neurons expressed Na,1.1 across the DG, CA3, and CA1 at
both PW3 and PW4. Despite having similar amount of GAD67(+)
neurons, the percentage of Nav1.1-GAD67(+) neurons in DG was
significantly reduced to 58% at PW3 and further decreased to 39.2% at
PW4 (Figs. 3e-f). Unlike DG, both CA3 and CA1 exhibited relatively
normal levels of Na, 1.1-GAD67(+) cells until PW4, at which point the
percentage of Na, 1.1-expressing cells decreased to about 60% (61% for
CA3 and 62.4% for CA1) (Figs. 3e-f). A reduction of Na, 1.1-GAD67(+)
neurons, particularly in the DG, coincided with overall lower
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ps < 0.0001, Bonferroni test) (3 mice for each age group).

hippocampal GABA levels at PW4 (Fig. 3d). Taken together, we found
that the Het hippocampus suffered a severe reduction of Na,1.1 ex-
pression during development, with the majority of Na,1.1-
GADG67(+) neurons lost in the DG. These results provided cytological
evidence of a progressively abnormal hippocampal network, with
the most severe effect in the DG. It was also noted that this effect co-
incided with surging spontaneous seizures in Het mice.

Het DG GABAergic neurons were incapable of high-fidelity firing

The DG GABAergic circuit plays a significant role in gating major
excitatory input into the hippocampus. Based on the greatest degree
of reduction of Na, 1.1 expression in the DG, we next examined AP firing
properties in DG interneurons in acute hippocampal slices at PW3 and
PW4. We particularly focused on PV(+) interneurons, as the majority
of PV(+) interneurons express Na,1.1 (Dutton et al., 2012; Ogiwara
et al., 2007). DG GABAergic neurons were identified by Gad-driven
GFP in Gad1¢*:Scn1a™* and Gad1°™/*:Scn1af'%9%%'* mice. During
recording, biocytin was infused into the patched neurons, and a post

hoc immunohistochemistry was performed to confirm PV expression
in the recorded neurons (Fig. 4a). Morphological reconstruction showed
that our recorded neurons had characteristic features of fast-spiking
PV(+) DG interneurons, with the majority of their axons densely dis-
tributed within the granule layer (Fig. 4b) (Liu et al., 2014). The mor-
phology of these neurons also resembled a subclass of DG basket cells,
which form perisomatic synapses on DG granule cells (Jonas et al.,
2004).

To examine the excitability of DG GABAergic neurons, APs were
elicited by a series of step current injections (Fig. 4c). While there was
no significant difference in input resistance compared to the control
neurons, Gad1°™/*:Scn1af%9%*'+ PV(4) neurons showed drastically
lower excitability across various levels of current injection (Figs. 4c-e).
In addition to low excitability, Gad1¢F™*:Scn1af9%9%'+ neurons exhibited
unusual spike adaptation. Control fast-spiking PV(+) neurons normally
had very little or no adaptation during suprathreshold depolarization. In
contrast, Gad1°F"/*:Scn1af"%9%'* neurons showed a profound adapta-
tion in firing (spike number reduction: 29.98 + 3% in control and
78.9 + 15.4% in Gad1®™/*:Scn1af'%%*/+ neurons at 1000 pA injection)
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Fig. 4. The electrophysiological characteristics of DG PV(+) interneurons were significantly altered in Het mice. a. An example of a recorded neuron from a Gad1°"/*:Scn1a™/* mouse
(green). Biocytin (red) was infused to mark the patched neuron during recording. The expression of PV was confirmed by post hoc immunohistochemistry (blue). Scale bar, 20 um.
b. Morphological identification of a recorded neuron. The axon of the recorded cell is shown in red; the soma and dendrites are indicated in black. GCL, granule cell layer; ML, molecular
layer. Scale bar, 50 um. c. DG PV(+) interneurons from Gad 1%/ *:Scn1a®°%¥* mice showed reduced excitability and apparent spike adaptation. Top, examples of AP traces recorded from
PV(+) interneurons at PW4. Bottom, percentage reduction of spike number (left) and amplitude (right) in response to 1000 pA injection. d. Input-output relation of evoked spike
numbers in response to a series of current injections showed reduced excitability in PV(+) neurons from Gad1™/*:Scn1af'%%%* mice. The lower excitability of Het neurons was partic-
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Gad1°™/*:Scn1a™/* neurons. f. Examples of a single AP trace from WT (black) and Het (dash gray) neurons. g-k. Gad1%/*:Scn1af1%9°%+ PV(+) neurons showed altered AP features.
g. AP amplitude was reduced in Het (ps < 0.05 for both age groups, Bonferroni test). h. AP from Het neurons exhibited a much slower rise phase (ps < 0.01 for both age groups, Bonferroni
test).i. AP from Het neurons showed a slower decay phase (ps < 0.05 for both age groups, Bonferroni test). j. AP from Het neurons exhibited wider half-width (ps < 0.01 for both age groups,
Bonferroni test). k. AP from Het neurons showed smaller AHP amplitude (ps < 0.05 for both age groups, Bonferroni test). PW3: 5 neurons from 5 Gad1°™/*:Scn1a/* mice and 3 neurons
from 3 Gad1°™/*:Scn1af"%%%'+ mice. PW4: 6 neurons from 6 Gad1°™/*:Scn1a™/* mice and 4 neurons from 4 Gad1°™/*:Scn1af"%°%'+ mice.

and in AP aptitude at higher frequencies (amplitude reduction: 12.77 + more depolarized resting membrane potential compared to the control
4.59% in control and 80.60 + 3.41% in Gad1°™™*:Scn1a®'%%"'* neurons ~ neurons (Fig. S2).

at 1000 pA injection) (Fig. 4c bottom). Moreover, Gad1™/*:Scn1a- Further AP waveform analysis revealed altered AP features in Scnila-
E1099X/+ neurons showed frequent failure in firing, with apparent missing  deficient neurons. Compared to the control neurons, Gad1°™/*:Scn1a-
spikes during high frequency activity (Fig. 4c). Despite low excitability, ~ £°***/* neurons had much lower AP amplitudes (Figs. 4f, ). In addition,
Gad1F"/+:Scn1af19%9%'+ neurons, to our surprise, exhibited a slightly AP in Scnla-deficient neurons showed a much slower time course in
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both depolarization and repolarization phases, which resulted in
broadened APs (Figs. 4f, h-j). Such slow depolarization was followed
by abnormal hyperpolarization patterns, with fast AHP amplitude
being significantly reduced (Figs. 4f, k).

A compensatory up-regulation of Na, 1.3 expression has been shown
in hippocampal GABAergic neurons in a Scn1a™~ DS mouse model (Yu
et al.,, 2006). Compensatory changes in the expression of ion channels
might offer some explanation for the AP abnormality. We therefore
examined the expression of the o subunits of other sodium channels
(Nay1.2, Na, 1.3, and Na,1.6) and a fast spiking-required potassium
channel (K,3.2) in Het mice. Contrary to the previous report, we
found no detectable change in the expression of these sodium and
potassium channels in Het animals (Fig. S3). We also examined the
levels of these ion channels in Homo animals. We found that Na,1.6, a
genetic modifier of Na, 1.1 mutations, was downregulated (Fig. S3c),
whereas K,3.2 was upregulated in Homo mice (Fig. S3d).

Taken together, our results revealed the severe impact of sodium
channel-insufficiency on the electrophysiological abnormality in Het
PV(+) interneurons. Such aberrant excitability of PV(+) interneurons
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would greatly compromise the strength and precision of inhibitory
control in the DG network.

Scnlainsufficiency selectively elevated basal excitatory transmission in DG

To delineate the impact of deficient GABAergic input on network
transmission, we examined the spontaneous IPSCs and EPSCs received
at DG granule cells, the major DG principal neurons, in acute hippo-
campal slices. In order to avoid within-network bias on assessing
excitatory versus inhibitory transmission, we sampled IPSCs and
EPSCs from independent animals for each genotype, with minimal
amount of neurons sampled in each animal (Fig. 5 legend). In Het
granule cells, the frequency of sIPSCs was significantly reduced,
whereas SEPSC frequency was increased compared with control
cells (Figs. 5a-b). Despite the change in frequency, the amplitudes
of sIPSCs and sEPSCs from Het neurons were indistinguishable from
those of control neurons (Figs. S4a-b). These results indicated the
changes of neurotransmission following Na, 1.1 deficiency occurred
in the presynaptic terminals. To understand whether the change of
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Fig. 5. The DG network exhibited imbalanced activity in Het mice. a, b. Recordings in DG granule cells showed a decreased frequency of sIPSCs (a) and an increased frequency of SEPSCs
(b). Top: sample traces of sPSC recordings over a 10-second span. Bottom: cumulative plots of sPSCs. Bottom inset: average frequency of sPSCs (a and b: ps < 0.001 for cumulative fraction,
K-S test. p < 0.05 for averaged frequency, unpaired t-test) (SIPSC: 16 neurons from 7 WT mice and 20 neurons from 6 Het mice. sEPSC: 21 neurons from 9 WT mice and 20 neurons from 10
Het mice). c. mPSC recordings revealed no change in mIPSC frequency (p = 0.101 for cumulative fraction, K-S test. p = 0.6 for averaged frequency, unpaired t-test) (7 neurons from 5 WT
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e, f. Paired pulse stimulation showed increased release probability of excitatory terminals in Het mice. e. Sample traces of EPSCs evoked in DG granule cells by paired stimuli at
50-ms intervals. f. A reduced paired-pulse ratio (PPR, 2nd EPSC/1st EPSC) was evident in neurons from Het mice (4 neurons from 2 mice for each genotype).
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sPSC frequency was associated with an altered machinery of presyn-
aptic transmitter release, we examined miniature PSCs in DG granule
cells in the presence of the sodium channel blocker TTX (Figs. 5c-d).
In the Het neurons, the frequency and amplitude of mIPSCs were
indistinguishable from the controls (Fig. 5¢). In contrast, mEPSCs
showed a much higher frequency (Fig. 5d). Despite the increase in
frequency, mEPSC amplitude was similar to the control (Figs. S4c-d).
Increased mEPSC frequency likely suggested a heightened presynaptic
release probability. To further examine the release probability of
excitatory terminals, we measured the synaptic response of brief
paired stimuli with 50-ms intervals. The paired-pulse ratio (PPR,
EPSC2/EPSC1) in Het mice was significantly lower than that in the
controls (Figs. 5e-f). This result strongly supported the idea that
the release probability of excitatory terminals was elevated in Het
granule cells (Zucker, 1989).

Taken together, our results revealed imbalanced excitatory and
inhibitory inputs to DG granule cells as a result of weakened GABAergic
input within the network. Most importantly, the release probability of
excitatory terminals was significantly elevated in granule cells in this
network. This increased excitatory release probability could further
exacerbate the already hyperexcitable network by promoting runaway
excitation. Additionally, the imbalanced network activity likely has a
strong impact on the morphological development of DG neurons, as
the fine-tuning of neuronal connection is highly activity-dependent.

Scnila-deficient DG granule cells exhibited progressively altered
dendritic profile

Developmental remodeling of dendrites and synapses is partly
activity-dependent (Wong and Ghosh, 2002). The chronic imbalance
of excitatory and inhibitory inputs to DG granule cells would potentially
affect its dendritic and spine restructuring. To examine if imbalanced
network activity alters the structural remodeling of DG neurons, we
reconstructed dendritic profiles of Golgi-impregnated granule cells
(Fig. 6a). In the initial analysis that examined bifurcation numbers and
the amount of terminal endings of dendrite branches, Het granule
cells did not appear to be much different from the control cells
(Figs. 6a-c). Further analysis, however, revealed that development-
dependent dendritic arborization in Het granule cells was greatly
altered at PW4. The alteration manifested as a reduction in the number
of dendritic segments and the total dendritic length (Figs. 6d, f). It
should be noted that the decrease of dendritic length was due to a
lower overall number of dendritic segments but not a shorter average
segment length (Figs. 6d-f), suggesting a reduced dendritic complexity.
We also observed a slightly longer segment length in Het neurons in
PW3, but this difference was absent by PW4 (Fig. 6e). To further verify
the reduced dendritic complexity during development, we applied
Sholl analysis (Chen et al., 2012; Sholl, 1953), which measures the
number of intersections between dendrites and superimposed concen-
tric circles centered on the centroid of the soma (Fig. 6g). This analysis
revealed a greater reduction in dendritic complexity in Het neurons,
especially in the distal region (>100 pm from the soma) at PW4
(Figs. 6h-i). In addition to dendritic features, we examined the develop-
mental change of spine density. In the control neurons, normal pruning
during PW3 and PW4 resulted in a significant reduction of spine density
at both proximal (<50 pm from the soma) and distal (> 100 pm from the
soma) segments (Figs. 6j-k). In contrast, dendritic spines in Het neurons
did not undergo such normal pruning, leaving spine density unchanged
across both developmental stages (Fig. 6k).

Taken together, our results uncovered a progressively altered
dendritic architecture in Het granule cells. Abnormal dendritic arboriza-
tion likely hinders proper signal integration in the DG cells and contrib-
utes to the cognitive deficits seen in DS mice and patients. More
importantly, excess spines could result in greater excitatory input to
the granules cells, which, in combination with heightened excitatory

neurotransmission probability and dampened inhibitory control, could
easily result in runaway excitation in the DG network.

Discussion

In this study, we demonstrate that epileptic channelopathy in a DS
model with Scnla mutation causes pro-epileptic network activity in
the DG by directly reducing inhibitory input as well as elevating excitatory
input through functional adaptation during development. This develop-
mental network deficit coincides with progressive worsening of sponta-
neous seizures and premature mortality. These results are largely in
agreement with the conclusion from previous works that focus on dif-
ferent brain areas (Cheah et al., 2012; Han et al., 2012; Ogiwara et al.,
2007; Yu et al., 2006). In addition to functional assessment, we exam-
ined structural changes of DG granule cells in Scn1a-deficient mice.
Our result unveils previously undescribed age-dependent morpho-
logical alterations (reduced distal dendritic complexity with excess
proximal spines) of DG granule neurons in Scnla-deficient animals.
Because these morphological alterations likely further increases
network vulnerability to epileptic activity and could have a long
term impact on higher-order cognitive processing, our overall finding
points to the urgency of clinical intervention during early development.

General phenotype of spontaneous seizures and HISs in E1099X/+ models

Our results demonstrate that the Het mouse model exhibits pheno-
types that are reminiscent of DS patients. These phenotypes, which
include spontaneous seizures, HISs and seizure-induced mortality in
early development, also match the phenotypes seen in other DS
mouse models (Cheah et al., 2012; Ogiwara et al., 2007; Yu et al.,
2006). It has been reported that the seizure severity of heterozygous
Scnla alleles varies by strain background (Mistry et al., 2014). We
observed a similar strain-dependent impact on the phenotype of the
Scn1a®1%9% allele. In the 129 strain background, Het animals developed
normally. In contrast, Het in a mixed B6:129 background gave rise to a
seizure phenotype that is comparable to other DS mouse models
(Miller et al., 2014; Ogiwara et al., 2007; Yu et al., 2006). It is worth
noting that, in the same B6:129 N2 background, Het mice exhibited
higher lethality compared to other heterozygous Scnia null alleles (at
PW4: Het mice: 40%, Scn1a®™/* mice: 20%, Scn1a™'%¢/* mice: 30%)
(Miller et al., 2014; Ogiwara et al., 2007). This difference points to the
significant role of predisposing genetic components as well as the
nature of Scnla mutation with respect to seizure severity. In the case
of genetic composition influence, several Dravet survival modifier loci
have been identified in mouse (Miller et al., 2014). In addition, candi-
date modifiers show strain-dependent expression. These modifiers
include GABA-A receptor subunits (Gabra2, Gabra6, Gabrb2, and
Gabrg3), voltage-dependent calcium channel subunits (Cacnala and
Cacna2d1), potassium channel (Kcnj11), and chloride channel (Clcn3)
(Miller et al., 2014). The combination of such genetic variations would
have a major impact on neuronal excitability and seizure susceptibility
(Bian et al., 2006; Burgess and Noebels, 2000; Dickerson et al., 2002;
Gloyn et al., 2006; Hernandez et al., 2011; Macdonald et al., 2012;
Yamada et al., 2001). Further study of the physiological significance of
these modifier genes in relation to Scnla will provide greater insight
into personalized treatment in DS patients.

Similar to DS patients and other DS models, Het mice exhibited a
much lower threshold of HISs (Cao et al., 2012; Cheah et al., 2012).
The detailed mechanism underlying HISs is unclear. One possibility is
that a higher physical temperature may alter neural excitability by
altering ion channel properties, and/or by preferentially affecting inhib-
itory neurotransmission (Brauchi et al., 2006; Carpenter and Alving,
1968; Gorman and Marmor, 1970). Indeed, slice recording at higher
temperatures reveals elevated excitability in hippocampus as the result
of either changes in ion equilibrium or changes in the pre- or postsynaptic
properties of inhibitory neurons in the CA1 region (Qu and Leung, 2008;
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Fig. 6. The dendritic morphology of DG granule cells was altered in Het mice. a. Examples of reconstructed Golgi-stained DG granule cells. Scale bar, 50 um. b — f. Quantitative comparison of
the dendritic parameters in DG granule cells from mice at PW3 and PW4: number of bifurcation nodes (b), number of terminal endings (c), total length (d), segment length (e), and
segment number (f). b, c. Het neurons showed no difference in the amount of bifurcation nodes and terminal endings. d. Total dendritic length was reduced in Het neurons at PW4
(p <0.001 at PW4, Bonferroni test). e. No detectable difference of segment length between genotypes during development. Note that we observed a small increase of terminal segment
length in PW3 Het neurons compared to WT neurons (p < 0.05, Bonferroni test). f. Segment number was reduced in Het neurons at PW4 (p < 0.05, Bonferroni test). g. A camera lucida
drawing of a DG granule cell used for Sholl analysis. The number of dendritic intersections within each sphere was plotted against the radius from the soma. Scale bar: 50 um. h, i. Dendritic
complexity was reduced in Het DG granule cells at PW4, particularly in the distal regions (120-180 pum from soma) (ps < 0.01, Bonferroni test). For the sample size of Figs. 6b—i, PW3: 28
neurons from 12 WT mice and 31 neurons from 12 Het mice. PW4: 43 neurons from 9 WT and 43 neurons from 11 Het mice. j. Examples of Golgi-stained dendritic spines in the proximal
and distal dendrites of DG granule cells. Scale bar: 10 um. k. Abnormal spine pruning in Het mice. The difference in spine density between genotypes was particularly significant in the
proximal region at PW4 (p < 0.001, Bonferroni test) (20 dendrites per 12 neurons from 6 mice for each age group).

Qu et al., 2007; Wu and Fisher, 2000). If this is true, raising the tempera-
ture of Het mice would certainly exacerbate the already seizure-prone
DG network and further promote epileptic activity. Alternatively,
HISs might result from hyperthermia-induced respiratory alkalosis
(Schuchmann et al., 2006). For this reason, HISs in immature rats
can be immediately reversed by supplying 5% CO, for inhalation
(Schuchmann et al., 2006). Under normal conditions, HISs from
paraventricular nuclear activation are not easily triggered due to strong
local inhibition (Lovick and Coote, 1988). It is likely that such local inhi-
bition is compromised due to preferential loss of functional Na,1.1 in
inhibitory neurons in Scn1a mutants. This hypothesis is supported by

the observation that HISs can be immediately reverted by supplying
10% CO,, for inhalation in other Scn1a mutants (Ohmori et al., 2013).

Impact of Na, 1.1 deficiency on neural network activity and development

Similar to other DS models, Het mice exhibited reduced Na,1.1
expression across development. We observed a preferential reduction
of Na, 1.1-expressing GABAergic neurons in DG compared to CA3 and
CA1. This local-network specific reduction of Na,1.1-expressing
GABAergic neurons has also been reported in one DS model in which
the mutant Scnla is introduced specifically in GABAergic neurons
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(Cheah et al., 2012). Therefore, network-specific alteration of Na, 1.1
expression in GABAergic neurons reflects a high heterogeneity of
GABAergic neurons across networks and may help explain the epilepto-
genic nature of DG. Because Na, 1.1 is mainly expressed in the soma and
the AIS, often being concentrated at nodes of Ranvier, Na, 1.1 deficits
would certainly alter neuronal electrophysiological properties (Duflocq
et al., 2008). We found that the resting membrane potential was more
depolarized in Het hippocampal PV(+) interneurons compared to the
control neurons. As we did not examine the features of the Na™ current
or other related currents in detail in these neurons, it is difficult to deter-
mine the underlying cause. Contrary to our observation, an elevated
resting potential is not reported in other DS models (Ogiwara et al.,
2007; Tai et al., 2014). This discrepancy might result from cell type-
specific (in combination with strain differences) adaptation of the rest-
ing potential in response to sodium channel deficiency (Waxman,
2007).

In addition to an elevated resting potential, the firing properties of
Het neurons were greatly compromised. The time course of the AP in
Het PV(+) interneurons revealed overall slower AP dynamics with
smaller AP amplitudes. Because Scn1af%* is a null allele, these altered
AP features are likely caused by lower and/or slower sodium influx as
the result of the haploinsufficiency. This idea is supported by the obser-
vation that various mutations (nonsense and deletion) in Scnia result in
reduced Na™ current in inhibitory neurons (Mistry et al., 2014; Ogiwara
et al., 2007; Tai et al., 2014; Yu et al.,, 2006). In addition, because Na, 1.1
contains an important domain for local protein organization (Leterrier
et al,, 2011), Na,1.1 insufficiency might affect the organization of
other ion channels and/or regulatory proteins within AlS, resulting in
aberrant sodium influx (Garrido et al., 2003; Lorincz and Nusser,
2008). Altered sodium dynamics will further reduce or retard the subse-
quent activation of potassium channels in the repolarization phase,
leading to slower repolarization, wider APs, and smaller fast AHP
(Bean, 2009; Jonas et al.,, 2004; Martina et al., 1998). The lower AHP re-
flects inadequate potassium channel activation, which may result from
areduced activation level of potassium channels due to the significantly
lower sodium shooting. Alternatively, the smaller AHP might be caused
by a decreased expression of potassium channels. Chronic low excitabil-
ity, which leads to aberrant cellular signal transduction, likely hinder
the activity and/or development-dependent expression of other ion
channels and/or regulatory proteins. Changes in the expression of
other sodium channels have been reported in another DS model (Yu
et al.,, 2006) and rats with kainate-induced epilepsy (Qiao et al., 2013).
When we examined the expression levels of these other ion channels,
we found no detectable differences in the levels of global Na,1.2,
Na, 1.3, Na, 1.6, and K,3.2 in our Het animals. Changes in channel ex-
pression were only seen in Homo animals, in which Na, 1.6 expression
was decreased and K, 3.2 was increased. Differences in ion channel ex-
pression among DS models might reflect much more complex genetic
mechanisms (e.g., strain differences, neuron and/or age-specific regula-
tion) underlying the compensatory effect. A further systematic exami-
nation at the cell and/or circuit-specific level would offer more insight
into the complex interplay among ion channel expression in DS models.

Abnormal APs are suggestive of the firing deficits of Het PV(+)
neurons. These neurons were not merely less excitable but also were
incapable of persistent firing at higher frequencies. The firing of
these neurons also displayed abnormal spike adaptation with re-
spect to both amplitude and frequency. Because the DG network
relies heavily on the high fidelity of fast-spiking inhibition to set
the baseline activity within the network, imbalanced network activity
as the result of reducing inhibitory input is expected. Our results showed
decreased sIPSC and increased sEPSC frequency in the DG, which is
similar to the imbalanced network activity seen in CA1 in another DS
model (Han et al,, 2012). Despite differential changes in frequency, the
sPSCs amplitudes in the present DS model were indistinguishable from
those of controls, suggesting an unchanged postsynaptic function at
both inhibitory and excitatory terminals. In contrast to our results,

differential changes in sPSC amplitude in CA1 have been reported (Gu
et al., 2014). Inherent network and strain differences as well as various
subcellular impacts of Scn1a mutations likely contribute to the dis-
crepancy. In contrast to unchanged postsynaptic properties, we
observed elevated release probability at DG excitatory terminals, as
evidenced by heightened mEPSC frequency and decreased PPR
(i.e., decreased paired-pulse facilitation) in Het granule cells. Be-
cause granule cells receive excitatory inputs from local mossy cells
and entorhinal afferents, the heightened excitatory release probabil-
ity likely results from DG-autonomous hyperexcitability and/or
enhanced extrinsic input (Amaral et al., 2007; Deller et al., 1996).
Regardless of the source of these excitatory synapses, this observa-
tion points to a surprising pro-epileptic mechanism in addition to
reduced network inhibitory control, namely, increased excitatory
release probability might further exacerbate the already hyperexcit-
able DG network. In contrast to our result, no increase in mEPSC
frequency in CA1 or the prefrontal cortex is observed in another
DS model (Han et al., 2012). This difference may reflect a unique plastic-
ity feature of excitatory terminals in DG granule cells and further
supports the idea that the DG is especially vulnerable to epileptogenic
activity.

The central neural networks make excessive connections in the early
development. These connections are later strengthened, weakened, or
eliminated based on their inherent genetic program and activity history
(Tessier and Broadie, 2009). By examining dendritic morphology of DG
granule cells during the developmental transition of emerging sponta-
neous seizures, we found that Na, 1.1 deficiency significantly dampened
normal spine pruning, leading to excess proximal spines in Het granule
cells at PW4. Excess proximal spines, in combination with elevated
excitatory release probability, could facilitate runaway excitation,
particularly when considering that PV(+) interneurons represent
approximately 40% of DG basket cells (Ribak, 1992). PV(+) basket
cells provide perisomatic inhibition to granule cells and receive exten-
sive input from granule cells, thereby being linked to granule cells in a
powerful feedback inhibition circuit in the DG (Ribak, 1992). Tipping
the activity balance in granule cells by removing inhibitory control
and elevating excitatory input both structurally and functionally
(i.e., excess spines and heightened excitatory transmission and release
probability) would undoubtedly lead to catastrophic epileptic activity
in the network. In addition to abnormal spine pruning, we found that
the complexity of distal dendrites was severely reduced. Distal dendritic
structure in granule cells is specifically important for proper input inte-
gration as synaptic current at distal dendrites of granule cells has a very
fast time course, resulting in a very narrow time window for temporal
integration of synaptic inputs (Schmidt-Hieber et al., 2007). Reduced
dendritic arborization could therefore decrease the accuracy and fidelity
of signal propagation across the network, likely contributing to the
cognitive deficits seen in other DS models (Han et al., 2012; Ito et al.,
2013).

In conclusion, our results reveal plausible neural mechanisms under-
lying the developmental deficits of a novel DS model. Our results,
showing the similar temporal profile between seizure onset and
the underlying neural developmental abnormalities, could provide
a useful clinical reference for medical intervention in DS patients
during early development. In addition, the null mutation of the
Scn1af1999% 3llele, known to cause DS in human patients, could
serve as a powerful preclinical tool for treatment development.
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